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Abstract

Recently, there has been a significant amount of research studying the multiple-
instance learning model, yet all of this work has only considered this model when
there are boolean labels. However, in many of the application areas for which the
multiple-instance model fits, real-valued labels are more appropriate than boolean
labels. In this paper we define and study a real-valued multiple-instance model in
which each multiple-instance example is given a real-valued classification in [0, 1].
The real-valued classification indicates the degree to which the example satisfies the
target concept. To provide additional structure to the resulting learning problem,
we associate a real-valued label with each point in the multiple-instance example.
These values are then combined using a real-valued aggregation operator to obtain
the classification for the example. Motivated by the possible application of learn-
ing geometric patterns to problems in pattern recognition and scene classification
(with applications to content-based image retrieval), we provide on-line agnostic
algorithms for learning real-valued multiple-instance geometric concepts defined by
axis-aligned boxes in constant dimensional space. We obtain our learning algorithm
by reducing the problem to one in which the exponentiated gradient (or gradient
descent) algorithm can be used.

We also give a novel application of the virtual weights technique. In typical
applications of the virtual weights technique, all of the concepts in a group have the
same weight and prediction which allows a single “representative” concept from each
group to be tracked. However, in our application there are an exponential number
of different weights (and possible predictions). Hence, boxes in each group have
different weights and predictions making the computation of the contribution of a
group significantly more involved. However, we are able to both keep the number
of groups polynomial in the number of trials and efficiently compute the overall
prediction.

Keywords: Exponentiated Gradient algorithm, multiplicative weight updates, vir-
tual weights, geometric patterns, multiple-instance learning, real-valued labels, scene
classification, content-based image retrieval, landmark matching
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2 Goldman and Scott

1. Introduction

Recently, Dietterich et al. (1997) introduced the notion of learning
from multiple-instance examples where the target concept is a boolean
function, each example is a collection (or bag) of instances, and the
bag is classified as positive if and only if at least one of its elements is
classified as positive by the target concept. To help motivate our work,
we briefly review the work of Maron and Ratan (1998) on applying the
multiple-instance learning model to the domain of scene classification,
which can be used in a query by example approach to content-based
image retrieval. Suppose you are given a set of images labeled as to
whether or not they contain some particular feature, for example, a
waterfall. The goal here is to create a rule that can be used to describe
which images contain a waterfall. In their work, Maron and Ratan
create a set of subimages, which are 2×2 sets of pixels (which they call
blobs) along with the four neighboring blobs. They represent each of the
five blobs in the subimage by a triple with the average red, green and
blue intensities. Hence they obtain a 15-dimensional data point for each
subimage. Note that if, instead of color images, black-and-white images
were being used then each subimage would map into a 5-dimensional
data point. A bag for a given image will contain all of the subimages
contained within the image. A bag is a positive example of a waterfall
(or whatever concept is being learned) exactly when at least one of the
subimages corresponds to a waterfall. Suppose instead of classifying
an image as to whether or not it contained a waterfall, you want to
classify an image as to whether or not it represents a “dangerous”
scene. Here, instead of giving a boolean label to each image, it may be
much more appropriate to associate a real-valued label indicating the
degree of danger indicated by the image. In fact, in the drug discovery
application for which the multiple-instance model was first introduced,
Dietterich et al. (1997) used a boolean classification as to whether or
not a molecule is a musk molecule, yet as they indicated themselves,
this setting is atypical in that for most drug discovery applications a
real-valued affinity value would be used as the label. Recently, there has
a been a significant amount of work in studying the multiple-instance
model (Wang and Zucker, 2000; Long and Tan, 1998; Auer et al.,
1998; Auer, 1997; Goldman et al., 2000a; Maron and Lozano-Pérez,
1998; Maron, 1998; Maron and Ratan, 1998; Blum and Kalai, 1998),
yet all of this work has only considered boolean classification. One of
the contributions of our work is initiating the study of a real-valued
multiple-instance model.

In the standard multiple-instance model, an example contains m
points from some domain X . Most typically, X = <d. In both the drug
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Multiple-Instance Learning of Real-Valued Geometric Patterns 3

discovery and natural scene classification examples described above,
one can think of there being an ideal point p in <d for which bind-
ing will occur (in the drug discovery application) or which captures
the essence of a waterfall (in the scene classification example). In the
boolean multiple-instance model the target concept can be defined as a
d-dimensional axis-aligned box, and a bag {x1, . . . ,xm} is classified as
positive if and only if at least one of the xi in the bag is within the target
box. In our work, we want to associate a real-valued label with each bag.
To provide additional structure to our model, we associate a real-valued
label with each point in the bag and then these labels are combined
using an aggregation operator to obtain the real-valued label for the
bag. See Lin and Lee (1996) or Klir and Yuan (1995) for a discussion
on fuzzy aggregation operators for the case in which fuzzy labels are
used. However, one can easily define aggregation operators that are
appropriate to the particular application area when probabilistic or
other real-valued labels are used.

As we describe more in the next section, the particular problem
motivating our study yields a more complex multiple-instance concept
class than the scene classification setting discussed above. Also, instead
of a batch learning model as described above in which the learner is
provided with a set of labeled training data from which the hypothesis
must be built, here we are interesting in applying a on-line model in
which the learner must make predictions as it is refining its hypothesis.

In this paper we define and study an on-line, agnostic (defined in
the next section), real-valued multiple-instance model in which each
multiple-instance example is given a real-valued classification in [0, 1].
The real-valued classification indicates the degree to which the ex-
ample satisfies the target concept. Motivated by the possible appli-
cation of learning geometric patterns to problems in pattern recogni-
tion (Goldman and Scott, 1999; Goldman et al., 2000a) and of scene
classification/content-based image retrieval, we provide algorithms for
learning real-valued multiple-instance geometric classes defined by a set
of axis-aligned boxes. In our work, we let X = Sd, for S = {1, 2, . . . , s}
and d a constant. For data with bounded values, (e.g. visual images)
using a discretized d-dimensional space is not a restriction since there
is generally a fixed degree of precision available. The parameter s cor-
responds to the number of different discrete values that are possible.
Our loss bound (and time complexity when using the virtual weights
technique) depend logarithmically on s. Our current algorithm is only
feasible for small dimensional spaces since our algorithm has exponen-
tial dependence on d. For the drug discovery applications d is typically
in the hundreds and hence our results will not directly by applicable
to that application area. However, for the scene classification problem,
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4 Goldman and Scott

if black and white images are used, then d = 5 and hence our results
could be applied to that setting1. In Section 3 we give another possible
application area for our results which is the problem which provided
the motivation for much of this work.

We obtain our loss bounds by reducing our geometric learning prob-
lem to one where we can apply either the exponentiated gradient (EGU)
algorithm or gradient descent (GD) algorithm. Both of these algorithms
are discussed in Section 5. In general, our reduction involves enumer-
ating all boxes in Sd and associating attributes with them. Then we
can apply either EGU or GD to learn the best linear combination of
the attributes. The technique we use to obtain our results is quite
general and can be applied for any concept class and method for ob-
taining the label for the multiple-instance examples as long as any
multiple-instance example can be evaluated in polynomial time and the
aggregation function can be approximated using a linear combination.

One drawback of our application of EGU (or GD) is that the re-
ductions we use create an exponential number of attributes (even for
d a constant) and thus the predictions cannot be made in polynomial
time. Another key contribution of our work is our development of a
novel application of the virtual weights technique of Maass and War-
muth (1998) that enables our predictions to be made in polynomial
time. In typical applications of the virtual weights technique, all of
the concepts in a group have the same weight and prediction, which
allows a single “representative” concept from each group to be tracked.
However, in our application there are an exponential number of different
weights (and possible predictions). Hence, boxes in each group have
different weights and predictions which makes the computation of the
contribution of a group is significantly more involved. As described in
Section 6.2, we are able to both keep the number of groups polynomial
in the number of trials and efficiently compute the overall prediction.

This paper is organized as follows. In the next section, we formal-
ize our real-valued multiple-instance learning model. In Section 3, we
describe a pattern recognition application to motivate our study of
geometric concepts in the real-valued multiple-instance learning model.
We contrast our work with related work in Section 4. Then in Section 5
we review some results on the exponentiated gradient and gradient
descent algorithms, which we use in our algorithms. Our algorithms are
presented in Section 6. We first present our reduction to EGU and GD
in Section 6.1 and then the virtual weights variations are described in

1 In addition, if other features (e.g. elongation, region aspect ratio) are used in
lieu of blobs, then d is the number of features extracted per region, and may be less
than 5.
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Section 6.2. Section 7 looks at alternate aggregation functions. Finally,
Section 8 summarizes other results and future directions of this work.

2. A Real-Valued Multiple-Instance On-line Model

We apply the on-line agnostic learning model (Haussler, 1992; Kearns
et al., 1994) to the multiple-instance setting. Let S = 〈(x1, y1), . . . , (xt, yt)〉
be the sequence of trials. Each multiple-instance example xi is a set
of mi elements from domain X . While our model is well defined for
any domain X , throughout the rest of this paper we will assume that
X = Sd for S = {1, 2, . . . , s}. Hence each bag consists of a set of
points from a discretized d-dimensional space. As in the standard on-
line learning model, during trial t, multiple-instance example xt is
presented to the learner. In polynomial time the learner must produce
a prediction ŷt ∈ [0, 1] as to the classification of xt. Then the learner
receives the desired output yt ∈ [0, 1] and incurs a loss L(yt, ŷt) for
some loss function L. In this paper we use the square loss function
(i.e. L(ŷt, yt) = (ŷt − yt)

2). However, we could instead use other loss
functions. The total loss of the learner is given by

∑T
t=1 L(ŷt, yt) where

T is the total number of trials. We consider the agnostic learning model
in which the performance of the learning algorithm is compared with
the performance of the best hypothesis selected from a comparison or
“touchstone” class. For a sequence of trials, the best hypothesis from
the touchstone class is the one that has the minimum total loss.

In our model, along with having each bag b defined by a set of points
from X , the target concept C will be defined by a set of concepts from
some base class C. That is, C = {c1, . . . , ck} ⊆ C. We must define a
set of functions to determine how the final label in [0, 1] is given to the
bag b according to the target concept C. Our goal is that the this label
will measure the degree to which the bag is positive with respect to the
target concept.

For a concept c ∈ C and point p ∈ X , we define a membership
function, µc : X → [0, 1]. That is, much like in the fuzzy sets literature,
µc(p) returns an appropriate label in [0, 1] for the point p that indicates
the amount of membership a point p has in c. Throughout this paper, C
will be the class of axis-aligned boxes in Sd. We made this choice since
in the applications we are considering, each point p is d-dimensional
point and the label should be related to how close p is to the center
pc of the box c. Hence, we define µc(p) to be a function that is 1 at
c’s center and monotonically decreases as the distance from the center
increases, taking the value 0 at c’s defining edges. More specifically, we
will use the following:
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6 Goldman and Scott

µc(p) =

{

0 if p 6∈ c

1− ‖p−pc‖`

maxp′∈c ‖p
′−pc‖`

otherwise
, (1)

where pc is the center point of box c and ‖ · ‖` denotes the `-norm. The
above equation measures the distance from p to c’s center and normal-
izes by dividing by the radius of c under ‖·‖`. Other possibilities include
Gaussian-shaped functions and unnormalized linear functions (Lin and
Lee, 1996).

In most of the multiple-instance work, the target concept is de-
fined by a single box in C and hence the membership of point p in
the target concept c is defined by µc(p). However, in our work we
consider when the target concept is defined by any number of boxes.
Hence, for each C = {c1, . . . , ck} ⊆ C we must define µC(p) as a func-
tion of µc1(p), . . . , µck

(p). We refer to the function used to combine
µc1(p), . . . , µck

(p) as the membership combination function. For ease
of of exposition, we assume that C = {a, b} but all of the defini-
tions given below naturally extend to more than two concepts. Given
real-valued boxes a and b, their union, intersection, and complement,
respectively, are defined as: µa∪b(p) = max{µa(p), µb(p)}, µa∩b(p) =
min{µa(p), µb(p)}, and µā(p) = 1−µa(p). The union, intersection and
complement definitions are standard fuzzy combination operators. (See
e.g. Lin and Lee (1996) or Klir and Yuan (1995) for more detail on these
operators.)

In addition to the point membership function and the membership
combination function, we need an aggregation function f to combine
the labels for the individual points to obtain a label for the bag. There
are three natural choices here. One possibility is that the highest label
of any point in the bag should be used as the label for the bag. For
example, in the drug discovery application, each point represents a
possible conformation (shape) of a molecule and the label would be
a measure of the strength of the bond when the molecule is in that
shape. However, the molecule will eventually take the shape that has
the strongest binding strength, and hence the binding strength for the
bag (i.e the molecule) is really defined as the binding strength of the
most desirable shape. Similarly, in scene classification (say in learning
to classify an image as to whether it contains a waterfall), each point
corresponds to one small area of the image and the label corresponds to
the likelihood that the image is a waterfall based on that one area. The
intuition is that if the image is a waterfall then one of these subimages
will contain a feature that indicates it is a waterfall and otherwise, all
of the subimages will have a small label. Hence, picking the maximum
function for the aggregation function f would be most appropriate for
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both of these cases. Another natural choice for f is to use the average
function. This choice would be appropriate in applications such as that
described in the next section where the label of each point in some way
affects the label of the bag. In some settings, a weighted average may
even be desired and f can easily be defined that way. Finally, one could
use the minimum function for f . This choice is the closest match to the
Hausdorff distance (Gruber, 1983) in that you want the portion of the
image with the lowest label to determine the overall label.

3. Motivating Example

We now look at the particular problem that motivated this work so
that we can see how this new learning model can be applied to it.
Developing the ability to recognize a landmark from a visual image
of a robot’s current location is a fundamental problem in robotics.
Consider a robot designed to navigate through a large-scaled environ-
ment2. Suppose a set of key “landmarks” have already been selected
(by another component of the navigation system). It is crucial that the
robot be able to recognize whether or not it is in the vicinity of a given
landmark from data taken at the robot’s current location. We refer to
this problem as the landmark matching problem.

One approach to designing landmark matching algorithms uses a
pattern matching approach to match the visual image (or whatever
form of data is available) to the data taken at landmark position L.
The matching algorithm should determine how close the robot is to L.
Because the visual image may change significantly as small movements
around L are made, the pattern matching approach encounters diffi-
culties. Goldberg et al. (1996) first proposed approaching this problem
by creating a set of positive examples (i.e. geometric patterns obtained
using waveforms from locations in the vicinity of the landmark) and a
set of negative examples (i.e. patterns obtained using waveforms from
locations not in the vicinity of the landmark). Then they use a learning
algorithm to construct a hypothesis to accurately predict if the robot
is near the given landmark.

For a standard (boolean) geometric pattern C (Goldman et al.,
2000a), a bag P is positive iff (1) each of the boxes c ∈ C contains
a point from P , and (2) each point in P lies in some box c ∈ C.
This definition in inspired by the Hausdorff metric for measuring vi-
sual resemblance (Gruber, 1983) between two patterns/images. For this
application, one can view each box as an area in which one expects the

2 By a large-scaled environment we mean that not all landmarks are visible from
all locations in the environment.
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8 Goldman and Scott

target image to have certain behavior. In the real-valued generalization,
the label3 of bag P measures the degree to which criteria (1) and (2)
are satisfied.

Ideally, in a positive example, there would be a point in the center of
each box. However, part of the motivation of using a learning approach
for this pattern matching problem is the flexibility provided by the
geometric concepts for handling variations between images of the same
object obtained from slightly different locations and/or conditions.
(One can think of these concept classes as being generalizations of
the Hausdorff metric where weighted norms are used, and the weights
can vary for each point.) Under the standard (boolean) formulation, a
binary classification is made for each point (based on whether it is inside
the box or not) and then these are combined to give a classification for
the bag. A problem with this formulation is that one could have an
example X1 where all m points are very near the centers of the boxes
and another example X2 in which all m points are along the borders of
the boxes. One would like a classification scheme that reflects that X1

is more similar to the target than X2. Our work resolves this important
problem by using a real-valued model of membership for a point inside
a box and then using real-valued aggregation operators to combine the
points in the bag.

Similar to the approach first proposed by Goldberg et al. (1996) and
later studied by Goldman et al. (2000a), we propose converting a d-
dimensional visual image into a (d+1)-dimensional geometric pattern.
The key difference here is that we would like to model this problem in
a way that associates a real-valued label to each pattern versus just a
boolean label. This is very important since if the navigation algorithm
would like to know if it is at a desired landmark, it is more useful to
receive a real value indicating how close it is to the landmark versus
just a boolean output.

As discussed earlier, in most applications studied for the multiple-
instance model, such as the scene classification problem or drug dis-
covery problem, the target concept is defined by an axis-aligned box
in d dimensional space. That is, a bag is classified as positive if and
only if at least one point in the bag is in the box. In terms of the model
described in the past section, in these settings k = 1 (the target concept
is defined by a single box) and the natural aggregation function to use
would be the maximum since it is the point with the highest label that
should define the label for the bag.

3 The labels could come from a human expert or signal processing system that
we are trying to approximate.
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Figure 1. An example of mapping a one-dimensional waveform to a two-dimensional
pattern. In the waveform W on the top the y-axis plots the intensity level and the
x-axis is the index into the one-dimensional array representing the waveform. The
figure on the bottom shows the two-dimensional geometric pattern created from W .

In the landmark recognition problem, a more complex multiple-
instance classification method has been used. Consider a d-dimensional
waveform W in which the data is representable as a constant-dimen-
sional array of values, e.g. light intensities, sonar data, or temporal
difference information. So, for example, in a 2-dimensional image for
each (x, y)-value would be an intensity level. Or if you have a color
image you could model this as a three-dimensional image where you
have an intensity level for each x, y and {red, green, blue} value. We
then create a (d+1)-dimensional geometric pattern as follows. By nor-
malizing the values of W and taking its derivative at different sampling
points, we can map W to a set of points P in (d + 1)-dimensional
space by computing the rate of change in W and then placing a point
whenever the absolute value of the derivative of W is larger than some
given threshold. The value used for the (d + 1)st dimension would be
the value of the derivative. Figure 1 shows an example of mapping
a one-dimensional waveform to a two-dimensional geometric pattern.
We selected a one-dimensional waveform simply because it is easiest
to illustrate. The waveform shown at the top of Figure 1 represents
the target waveform (with the y-axis used to show the intensity level).
The dashed boxes around the target waveform mark portions of the
waveform that indicate some behavior that would be expected in any
waveform taken near the landmark. In other words, the dashed boxes
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10 Goldman and Scott

around portions of the waveform W indicate components that must
be translated, stretched, compressed, and scaled when relating another
waveform W ′ to W . The geometric pattern P below W indicates the
two-dimensional geometric pattern yielded by taking the derivative of
W and using its value for the second (or in general, (d+1)st) dimension,
which is the y-coordinate in the figure. The boxes around the points
represent the target concept C. The boxes vary in size in each dimen-
sion to allow for certain components to vary more than others. Note
that there are two types of solid boxes. First there are the boxes that
overlap with the x-axis that directly correlate with the dashed boxes.
They represent ranges of x for which the waveform has relatively small
fluctuations. The other boxes represent areas in which a significant
increase or decrease in the rate of change of the waveform is expected.
So, one can view each box as an area in which one expects the target
image to have certain behavior.

In the boolean domain, one would classify a waveform as posi-
tive if the geometric pattern obtained from it has a point in each
of the solid boxes and each solid box has at least one point. This
definition in inspired by the Hausdorff metric for measuring visual re-
semblance (Gruber, 1983) between two patterns/images. More formally,
in the boolean domain the target concept is defined by a set C of k
axis-aligned boxes. Here, a bag x is classified as positive if and only if
(1) each of the ≤ k boxes c ∈ C contains a point in x, and (2) each
point in x lies in some box c ∈ C. Our goal here is to expand this work
to define a real-valued variation where the label captures the degree of
resemblance.

In the most natural extension of the Hausdorff metric, the label for
a point would be the maximum label given by any box in the target
concept and the aggregation function to combine the points in a bag
would be the minimum since the Hausdorff metric is defined by the
point which has the lowest membership value. We now argue that this
straightforward generalization of the Hausdorff metric is not the best
option for this particular application. We return to Figure 1. Let W ′

be the waveform one would get in the top figure with the dashed spike
and P ′ the pattern shown below that includes the open circles. Using
the definition described above would yield a label of 0 because the
labels for the two open circles (which are outliers) are 0 and hence the
minimum aggregation function would yield a label of 0. If the spike
is an important feature of the target waveform then a label of 0 for a
waveform without the spike would be appropriate. However, that spike
could also just be noise in the image. Since we expect the waveforms to
have a high level of noise, we feel that using the minimum aggregation
function attaches to much weight to outliers to be appropriate. Instead
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we propose using an average aggregation function. Note that taking the
average label of the points in P ′ yields a label that has been reduced
by the two outliers but is still greater than 0.

For the remainder of this paper we focus on the following situa-
tion, which we feel is most appropriate for this particular application.
(Other possibilities are considered in Section 7.) The label for bag
b = {p1, . . . ,pm} is the average value over the points, where for each
point the maximum taken over the boxes in the target concept is used.
That is, we use:

(1/m)
m
∑

i=1

max
c∈C

{µc(pi)} . (2)

At times, the derivations required for the virtual weights application
(Section 6.2) are complicated by the maximum function in the above.
Furthermore, for the pattern matching application we would expect
that the target boxes are disjoint and hence each point lies in at most
one target box. Under this restriction, the above equation is equivalent
to

(1/m)
∑

c∈C

∑

p∈c

µc(p). (3)

We use this formulation for presenting our main results. The re-
sults in Section 6 apply for any concept class and membership and
aggregation functions as long as a multi-instance example can be eval-
uated in polynomial time. The particular choice for the membership
and aggregation functions only affects the application of the virtual
weights technique, which becomes significantly more complicated when
the maximum function is used.

4. Related Learning Models

Recently, there has a been a significant amount of work in study-
ing the multiple-instance model (Wang and Zucker, 2000; Long and
Tan, 1998; Auer et al., 1998; Auer, 1997; Maron and Lozano-Pérez,
1998; Maron, 1998; Maron and Ratan, 1998; Blum and Kalai, 1998) in
the boolean domain. Most of this work addresses the problem of learn-
ing a multiple-instance concept defined by a single axis-aligned box.
There also has been some work on learning geometric patterns (Gold-
man et al., 2000a; Goldman and Scott, 1999; Goldberg et al., 1996) in
the boolean domain and our work directly builds upon this work. In
particular, the algorithm we propose is inspired by the algorithm given
by Goldman et al. (2000a).
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12 Goldman and Scott

The learning model we define is an on-line learning model (Angluin,
1998; Littlestone, 1998) and hence builds upon some of the earlier
results in the on-line learning model. In particular, we apply the re-
sults of Kivinen and Warmuth (1997a), which are described in more
depth in the next section. In addition, we consider an agnostic learning
model4 in the sense that they make no assumptions whatsoever about
the target concept to be learned. For a sequence of trials, the best
hypothesis from a given comparison or “touchstone” class is defined to
be the one that makes the minimum number of mistakes (or has the
minimum loss). In the agnostic on-line learning algorithm, the learning
algorithm’s performance is compared with the performance of the best
hypothesis from the touchstone class.

On the surface, our model has many similarities with the p-concepts
model (Kearns and Schapire, 1994). A p-concept c over the domain
X is a mapping c : X → [0, 1]. For each x ∈ X , c(x) is interpreted
as the probability that x is a positive example of the p-concept c. A
p-concepts algorithm (to find a good model of probability) must infer
a hypothesis h : X → [0, 1] that is a good real-valued approximation
to the target concept c from labeled boolean examples (x, b) where b is
one with probability c(x) and zero with probability 1 − c(x). Clearly
p-concepts are closely related to real-valued sets. One can view c(x)
as the degree to which x satisfies concept c. However, there are sev-
eral important differences between p-concepts and real-valued concepts.
First, consider the following example. The target concept c is “healthful
foods”. Suppose you are told c(doughnut) = .2. This does not mean if
you eat a doughnut then there is a 20% chance that it will be healthful
and an 80% chance that it will not be healthful. Instead it is giving a
rating on a scale of 0 to 1 of the healthfulness of a doughnut.

Second, under this real-valued logic view, one expects the examples
to be of the form (x, c(x)) and the goal is to predict c(x′) given x′. Thus
in our real-valued learning model the examples are given real-valued
labels in [0, 1] (versus the boolean labels of the p-concepts model).
To further justify this decision, consider the problem of classifying
students in terms of their suitability for admission to a particular uni-
versity. Many factors (e.g. academic background, leadership potential,
extracurricular activities) are used. For each of these factors there are
different degrees to which the applicant meets the criteria. For exam-

4 See Haussler (1992) and Kearns et al. (1994) for the definition of agnostic PAC-
learning. Auer et al. (1996) first used the term agnostic on-line learning to refer
to an on-line learning algorithm in which the loss bound is stated with respect
to the best learner from a given touchstone class. Although on-line learning implies
PAC learning (Angluin, 1998; Littlestone, 1998), it is not immediately clear whether
on-line agnostic learning implies PAC agnostic learning.
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ple, one would not want to simply say that an applicant has been a
leader or has not been a leader. There is a spectrum between these two
extremes. We want the learning algorithm to receive a value between
[0, 1] (obtained by aggregating many real-valued attributes) versus a 0
or 1 that was probabilistically selected.

Finally, by studying this type of model in a multiple-instance frame-
work we are able to use the real-valued aggregation operators to provide
a structured way to create real-valued concepts that are learnable.
For example, Kearns and Schapire (1994) give an algorithm to learn
the p-concepts class of all nondecreasing functions c : < → [0, 1]. By
combining real-valued intervals we can generalize this result to a more
general class of functions that are not monotonic.

The unreliable boundary queries (UBQ) model (Blum et al., 1998)
is designed to study situations in which the boundary between positive
and negative examples is ill-defined. However, an important distinction
is that in their model the classification of examples near the boundary
is not important. Two other models that have somewhat similar mo-
tivations are the unspecified attribute values (UAV) model (Goldman
et al., 1997; Birkendorf et al., 1998b; Bshouty and Wilson, 1999) and the
restricted focus of attention (RFA) model (Ben-David and Dichterman,
1993; Birkendorf et al., 1998a). In both of these models the learner
only sees some of the attributes (with differences in what determines
this set). In the RFA model the goal is still to obtain the proper bi-
nary classification. However, in the UAV model the learner produces
a ternary-valued hypothesis in which it predicts that an example x is
positive, negative, or can’t be determined. One can think of this as a
very coarse real-valued scale (e.g. [0, ε], (ε, 1 − ε), [1− ε, 1]).

5. Exponentiated Gradient and Gradient Descent

Our algorithms convert the geometric problem into a learning prob-
lem for which we can then apply the exponentiated gradient (EGU)
algorithm 5 or the gradient descent (GD) algorithms. Thus, we briefly
describe both algorithms and give some key results known about their
performance. Both algorithms maintain a weight vector wt that corre-
sponds to the weights of the attributes at trial t. Given the instance xt

that corresponds to trial t, both algorithms predict6 ŷ = wt · xt. After
receiving xt’s actual label yt, GD updates its weights as follows:

5 We speculate that our results are applicable to other EG variants, but we use
EGU for brevity.

6 Often the prediction is ŷ = f(wt · xt), where f(·) is a transfer function such as
a sigmoidal function. In our work we let f be the identity function.
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14 Goldman and Scott

wt+1 = wt − ηL′
yt

(ŷt)xt, (4)

where η is a learning rate and L′
yt

= (∂L(yt, z)/∂z)z=ŷt
, i.e. the gradient

of the loss function L (in this paper, we use square loss, i.e. Lyt(ŷt) =
(yt − ŷt)

2). EGU’s update function is

wt+1 = wt · exp
(

−ηL′
yt

(ŷt)xt

)

. (5)

The results of Kivinen and Warmuth (1997a) are very general, in-
cluding analyses for several variants of EG and on loss bounds when
different transfer functions (e.g. a sigmoidal function) are applied to
the neuron’s output. Other related work can be found in Kivinen and
Warmuth (1997b), Warmuth and Jagota (1997), Cesa-Bianchi et al.
(1996), Long (1997), and Helmbold et al. (1996). We now state the
results applied here. Loss (w,S) is the total loss on trial sequence S by
w, which represents an algorithm or a constant weight vector.

THEOREM 1. (Kivinen and Warmuth, 1997a) Consider a sequence
of trials S = 〈(x1, y1), . . . , (xt, yt)〉, and values X, Y , and Z such that
for all t, xt ∈ [0, X]N , yt ∈ [0, Y ], and ‖xt‖2 ≤ Z. For both GD and
EGU, let the size-N initial weight vector s = (1/N, . . . , 1/N). Then for
any weight vector u, GD’s total loss on S is at most

2
(

Loss (u,S) + ‖u− s‖2
2 Z2

)

,

and EGU’s total loss on S is at most

3

(

Loss (u,S) + XY

(

1 + (lnN − 1)
N
∑

i=1

ui +
N
∑

i=1

ui lnui

))

.

Furthermore, if Loss (u,S) is known a priori to be 0 then Loss (EGU,S) ≤
2XY

(

1 + (lnN − 1)
∑N

i=1 ui +
∑N

i=1 ui lnui

)

.

6. The Algorithm

6.1. Reduction to EGU and GD

We obtain our loss bounds by reducing our geometric learning problem
to one where we can apply either GD or EGU. The technique we use
here is very general. In particular, our results apply for any concept
class C, membership function µ, membership combination function and
aggregation function as long as any multiple-instance example from
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Multiple-Instance Learning of Real-Valued Geometric Patterns 15

the domain can be evaluated in polynomial time. The loss bounds we
obtain will depend on log |C| and the time complexity bounds (prior
to the application of the virtual weights technique) will depend on |C|.
For ease of exposition, we have chosen to present our result for the
particular geometric domain we are studying.

In general, our reduction involves enumerating all concepts from C
(which in the geometric setting are all boxes in Sd) and associating
attributes with them. Then we can apply either GD or EGU to learn
the best linear combination of the attributes. In this section, we de-
scribe our reduction and give the loss bounds obtained by applying
Theorem 1. Our reduction creates an exponential number of attributes
and thus the predictions cannot be made in polynomial time. We then
describe a novel application of the virtual weights technique to get a
polynomial-time algorithm for some settings.

For all of our results (in this section and in Section 7), when we
apply Theorem 1, N is the number of attributes, and since all labels
and membership function outputs (which are the attributes) are in
[0, 1], we get X = Y = 1 and Z =

√
N . We use K to denote the

number of relevant attributes. (Each non-relevant attribute will have a
weight of 0 in the optimal weight vector.)

Under the assumption that K � N , the bounds we obtain using
EGU are substantially better than those of GD, which is consistent
with more general theoretical and empirical analyses (Kivinen and
Warmuth, 1997a). Since we are only stating our bounds for this specific
case, we only state EGU’s bounds.

We now present our reduction and resulting loss bounds for learning
real-valued geometric patterns labeled by sets of ≤ k axis-parallel boxes
under the max combination function and the average aggregation oper-
ator. We define attributes that capture the degree to which the example
is negative. Notice that here (in the noise-free case) there exists a weight
function that gives perfect predictions.

THEOREM 2. On any sequence of trials S = 〈(x1, y1), . . . , (xt, yt)〉,
our algorithm for learning real-valued geometric patterns (using average
aggregation) on multiple-instance examples of m points from {1, . . . , s}d

has loss on S of at most

3 (Loss (u,S) + 2dk ln s− k + 1) .

Furthermore, if Loss (u,S) is known a priori to be 0 then we obtain the
stronger loss bound of 4dk ln s− 2k + 2.

Proof: Enumerate all boxes in Sd and create one attribute Ab per box
b, setting it to (1/m)

∑

p∈b µb(p). So N ≤ s2d. Since the target concept
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16 Goldman and Scott

is defined by k boxes, there are only k relevant attributes and the target
concept is defined by taking the average of these attributes. Without
loss of generality, we can assume that

∑N
i=1 ui = 1. Hence, the worst-

case loss bound occurs when the optimal weight vector u has k entries
of 1/k and the remaining entries are 0. Applying Theorem 1 yields the
stated result.

6.2. Efficient Implementation with Virtual Weights

The problem that remains with the direct implementation of EGU or
GD is that the number of attributes (and thus the computation time)
is exponential in log s, the number of bits required to specify part of
the input. We now adapt the virtual weight technique of Maass and
Warmuth (1998) to implicitly maintain the weights. The main problem
is, given a group of boxes related to each other by some criterion, find a
closed-form solution for the total contribution of those boxes’ attributes
to the total weighted sum. Finding an exact closed-form solution for
the unweighted sum of µb(p) values can be difficult enough: e.g. the
normalization factor in the denominator of Equation (1) implies that
the closed-form solution might be at best approximated by a harmonic,
depending on the norm used. But we must also include the boxes’
weights, which are no longer equal within a group, though they are
related.

We now demonstrate a setting when the virtual weights technique
can be applied to this multiple-instance real-valued learning problem
when Equation (3) is used to label the bags. Namely, we apply EGU
with fixed boxes using the average combining formulation. We have
selected this problem since it demonstrates the techniques without
getting too complex. We start with the assumption that all boxes in
the target concept are the same (with known radius r)7 and the 1-norm
is used. Thus if p ∈ b, Equation (1) becomes:

µb(p) = 1−
∑d

i=1 |pi − cb,i|
r

, (6)

where cb,i is the ith coordinate of the center of box b. We then set the
value of Ab to be

Ab =
1

m

∑

p∈b

(

1−
∑d

i=1 |pi − cb,i|
r

)

.

7 Note that, however, we can apply this procedure to the class of concepts in
which each box can come from some finite set B by simply repeating the virtual
weights procedure for each box type in B.
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Multiple-Instance Learning of Real-Valued Geometric Patterns 17

For the remainder of this section we will focus on efficiently comput-
ing the contributions of the Ab attributes to the weighted sum by using
the virtual weight technique of Maass and Warmuth (1998). The basic
idea is to group all boxes (or more generally, concepts) that “behave
alike” (with respect to the points seen so far) into groups. Typically
when using this technique, all boxes in a group have the same weight
and hence a single “representative” box can be kept for each group
then one can multiply its weight by its attribute value and multiply
by the size of the group to compute the contribution of the group. As
we will explain in more depth, in our application each box in a group
will likely have a different weight and different attribute value and
hence the computation of the contribution of a group is more involved.
However, we are able to both keep the number of groups polynomial in
the number of trials and efficiently compute the contribution of each
group.

We now briefly review the procedure used by Goldman et al. (2000a)
to partition all the boxes of the space into groups (which is itself
an adaptation of Maass and Warmuth’s (1998) algorithm for learning
unions of boxes in fixed dimension). Suppose we want to predict the
classification of an example Pt. Let P = {p1, . . . ,pn} be the set of
distinct points that have appeared in all the examples. Note that n is
at most m times the number of trials so far, where m is the maximum
number of points per example. Each of the d axis-parallel (d − 1)-
dimensional hyperplanes is passed through each point in P, defining at
most (n+1)d regions (each of the form (`1,i, `1,i+1]×· · ·× (`d,j, `d,j+1]).
Let R be the set of these regions. They create a group for each region
containing all boxes completely within the region, and a group for each
pair of regions (R1, R2) containing all boxes with one corner in each of
R1 and R2 (see Figure 2).

The above groupings have the nice property that every box in a
group G contains the same set of points from P and hence has the same
weight in the boolean case. However, since we use real-valued boxes,
each point has a different membership value and so the predictions (and
hence the weights) differ. So we need to modify the way of defining the
groups. First, instead of having a group be a set of boxes, a group is a
set of quadrants, which are obtained as follows. Divide each box b into
2d quadrants by passing a hyperplane parallel to each of the d axes
through the center of box b. Each resulting quadrant is given a tag of
the form (γ1, . . . γd), where γi is 1 iff the ith dimensional coordinate of a
point in that quadrant is greater than that of the center. By maintaining
the property that the quadrants in each group contain the same set of
points from P, we can compute the weight of each quadrant in the
group by using the weight of a single representative quadrant and then
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w

z

l l l 1,n

l
2,1l

1,1 +1

l 1,n

l 1,n

2,0

1,0 l 1,n

+1

Figure 2. This demonstrates (for the case of d = 2) how Goldman et al. (2000a) do
the groupings for their virtual weight applications. The lightly shaded box (defined
by w in its top right corner) is Rw, and the more heavily shaded box (defined by
z in its top right corner) is Rz. The groups defined by (Rw, Rz) contain all boxes
with the bottom left corner in the lightly shaded box and the top right corner in
the heavily shaded box.

adjusting it by a simple formula that depends on the centers of the
two quadrants. Although each group has an exponential number of
quadrants whose predictions must be combined, we are able to compute
a closed-form expression for the total contribution.

Let Pt be the set of all points seen up to and including the current
trial t. We define a group corresponding to each triple (R1, R2, γ) where
this group contains all quadrants with their center in R1, their corner in
R2, and a tag of γ. (Note that for many of these triples, there will be no
quadrants in the group and hence they are not needed.) Let Pt,G ⊆ Pt

be the set of all such points that are contained in group G. Without
loss of generality, we will on focus on groups with a tag of (0, . . . , 0).
Since each quadrant is simply a box in Sd, we will use the term box
interchangeably with quadrant. We call the box in G with the smallest
possible coordinates for its center as the defining box b̌G of G. Let čG

be the center point for the box b̌G.
We now compute wt,č, which is the weight of the attribute Ač asso-

ciated with the representative box of a group. For ease of exposition,
since we are looking at an arbitrary group G, we drop the G in the
subscript. Let Pt be the set of points from trial t. Notice that Pt ∩ b̌
is the set of points from Pt that lie in box b̌. If we use the square loss
function L = (ŷt − yt)

2, then the update function from Equation (5)
yields
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wt,č = w1,č

t−1
∏

j=1

exp





−2η

n
(ŷj − yj)

∑

p∈Pj∩bč

(

1−
d
∑

i=1

či − pi

r

)



 .

Now suppose that box b (with center c) is in the same group as b̌.
Furthermore, let qi = ci − či and recall that all initial weights are
equal. Then

wt,c = w1,c

t−1
∏

j=1

exp





−2η

m
(ŷj − yj)

∑

p∈Pj∩b

(

1−
d
∑

i=1

ci − pi

r

)





= w1,č

t−1
∏

j=1

exp







−2η

m
(ŷj − yj)

∑

p∈Pj∩b̌

[

1−
(

d
∑

i=1

(

či − pi

r

)

+
d
∑

i=1

qi

r

)]







= wt,č

t−1
∏

j=1

exp

(

2η

m
(ŷj − yj)

∣

∣

∣Pj ∩ b̌
∣

∣

∣

d
∑

i=1

qi

r

)

. (7)

Let

YG,t−1 = exp





2η

m

t−1
∑

j=1

(ŷj − yj)
∣

∣

∣Pj ∩ b̌
∣

∣

∣



 .

Note that Y is easy to update since YG,t = YG,t−1·exp
(

2η
n (ŷt − yt)

∣

∣

∣Pt ∩ b̌
∣

∣

∣

)

.

For c the center of a box in the group G (whose representative box has
center č), let

ZG,c,t−1 = (YG,t−1)
1

r

∑d

i=1
ci .

Using this notation, we can rewrite Equation (7) as

wt,c = wt,č
ZG,c,t−1

ZG,č,t−1
.

When a new example Pt arrives for trial t, we recompute Z for each
group. Then the contribution to the prediction by group G is

1

m

∑

b∈G

∑

p∈Pt∩b

µb(p)wt,cb
,

where cb is the center for box b. Let cmin
i and cmax

i be, respectively, tight
lower and upper values for the ith coordinate of the boxes in group G.
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Then expanding the above equation gives the following for group G’s
contribution:

1

m

cmax
1
∑

c1=cmin
1

· · ·
cmax
d
∑

cd=cmin
d

∑

p∈Pt∩b̌

[(

1− 1

r

d
∑

i=1

(pi − ci)

)

· wt,č
ZG,c,t−1

ZG,č,t−1

]

=

∣

∣

∣Pt ∩ b̌
∣

∣

∣ · wt,č

m · ZG,č,t−1

cmax
1
∑

c1=cmin
1

· · ·
cmax
d
∑

cd=cmin
d

ZG,c,t−1

−wt,č

mr

cmax
1
∑

c1=cmin
1

· · ·
cmax
d
∑

cd=cmin
d

∑

p∈Pt∩b̌

[

d
∑

i=1

(pi − ci) ·
ZG,c,t−1

ZG,č,t−1

]

.

Let QG,t = wt,č/ (m · ZG,č,t−1). Then the contribution from group G is

∣

∣

∣Pt ∩ b̌
∣

∣

∣ · QG,t

cmax
1
∑

c1=cmin
1

· · ·
cmax
d
∑

cd=cmin
d

ZG,c,t−1

− QG,t

r





∑

p∈Pt∩b̌

d
∑

i=1

pi





cmax
1
∑

c1=cmin
1

· · ·
cmax
d
∑

cd=cmin
d

ZG,c,t−1

+
QG,t ·

∣

∣

∣Pt ∩ b̌
∣

∣

∣

r

cmax
1
∑

c1=cmin
1

· · ·
cmax
d
∑

cd=cmin
d

(

ZG,c,t−1

d
∑

i=1

ci

)

.

Now all that remains to make our algorithm efficient is to find
an efficient way to compute each of the above three terms without

running through the chain of sums
∑cmax

1

c1=cmin

1

· · ·∑cmax

d

cd=cmin

d

. Let Y ′
G,t−1 =

(YG,t−1)
1/r. Hence we must compute

cmax

1
∑

c1=cmin

1

· · ·
cmax

d
∑

cd=cmin

d

ZG,c,t−1 =

cmax

1
∑

c1=cmin

1

· · ·
cmax

d
∑

cd=cmin

d

(

Y ′
G,t−1

)

∑d

i=1
ci

(8)

and

cmax

1
∑

c1=cmin

1

· · ·
cmax

d
∑

cd=cmin

d

(

ZG,c,t−1

d
∑

i=1

ci

)

=

cmax

1
∑

c1=cmin

1

· · ·
cmax

d
∑

cd=cmin

d

[

(

Y ′
G,t−1

)

∑d

i=1
ci ·

d
∑

i=1

ci

]

. (9)
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In solving for Equation (8), we get

(

Y ′
G,t−1

)

∑d

i=1
cmin

i





cmax

1
−cmin

1
∑

j1=0

· · ·
cmax

d
−cmin

d
∑

jd=0

(

Y ′
G,t−1

)

∑d

i=1
ji





=
(

Y ′
G,t−1

)

∑d

i=1
cmin

i









cmax

1
−cmin

1
∑

j1=0

(

Y ′
G,t−1

)j1



 · · ·




cmax

d
−cmin

d
∑

jd=0

(

Y ′
G,t−1

)jd









=
(

Y ′
G,t−1

)

∑d

i=1
cmin

i

d
∏

j=1







(

Y ′
G,t−1

)cmax

j
−cmin

j
+1
− 1

Y ′
G,t−1 − 1







=
d
∏

j=1







(

Y ′
G,t−1

)cmax

j
+1
−
(

Y ′
G,t−1

)cmin

j

Y ′
G,t−1 − 1






.

Since Equation (9) is the product of Y ′
G,t−1 and the derivative of

Equation (8) with respect to Y ′
G,t−1, we get for Equation (9)

Y ′
G,t−1

d

d Y ′
G,t−1

d
∏

j=1







(

Y ′
G,t−1

)cmax

j +1
−
(

Y ′
G,t−1

)cmin

j

Y ′
G,t−1 − 1







= Y ′
G,t−1

d
∑

i=1







d

d Y ′
G,t−1







(

Y ′
G,t−1

)cmax

i
+1
−
(

Y ′
G,t−1

)cmin

i

Y ′
G,t−1 − 1













·
∏

j 6=i







(

Y ′
G,t−1

)cmax

j
+1
−
(

Y ′
G,t−1

)cmin

j

Y ′
G,t−1 − 1







= Y ′
G,t−1

d
∑

i=1







(

Y ′
G,t−1

)cmax

i
(

cmax
i

(

Y ′
G,t−1 − 1

)

− 1
)

(

Y ′
G,t−1 − 1

)2

−

(

Y ′
G,t−1

)cmin

i
−1 (

cmin
i

(

Y ′
G,t−1 − 1

)

+ Y ′
G,t−1

)

(

Y ′
G,t−1 − 1

)2







·
∏

j 6=i







(

Y ′
G,t−1

)cmax

j
+1
−
(

Y ′
G,t−1

)cmin

j

Y ′
G,t−1 − 1






.
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7. Other Aggregation Operators

We now demonstrate how to apply our results to other choices for the
membership combination function and other aggregation options. We
first consider the situation in which the target concept is defined by
a union of the boxes. Hence µc1∪···∪ck

(p) = maxµc1
(p),...,µck

(p). Here,
the maximum function is used for the membership combination and
the maximum function is also used as the aggregation operation. Since
EGU uses a weighted sum over the attributes, we are approximating
the maximum of the relevant attributes by a weighted average.

THEOREM 3. On any sequence of trials S = 〈(x1, y1), . . . , (xt, yt)〉,
our algorithm for learning the union of at most k axis-parallel real-
valued boxes with multiple-instance examples of m points from {1, . . . , s}d

has loss on S of at most

3 (Loss (u,S) + 2d ln s− ln k) .

Furthermore, if Loss (u,S) is known a priori to be 0 then we obtain the
stronger loss bound of 2d ln s− ln k.

Proof: Enumerate all possible boxes in Sd and create one attribute
Ab per box b, setting Ab = maxp∈P {µb(p)}. Thus N ≤ s2d. Since the
target concept is defined by k boxes, there are only k relevant attributes
and the target concept is defined by taking the maximum value from
among these attributes. Without loss of generality, we can assume that
∑N

i=1 ui = 1. Hence, the worst-case loss bound occurs when the optimal
weight vector u has k entries of 1/k and the remaining entries are 0.
Applying Theorem 1 yields the stated result.

We now demonstrate how to apply the virtual weights technique
to this membership combination function and aggregation option. We
assume that all boxes in the target concept are squares with the same
known radius r and the 1-norm is used. Thus assuming that p ∈ b,
Equation (1) becomes:

µb(p) = 1−
∑d

i=1 |pi − cb,i|
r

,

where cb,i is the ith coordinate of the center of box b. To remove the
absolute values from the sum, split the above into 2 sums:

µb(p) = 1− 1

r





d
∑

i=1,pi≥ci

(pi − ci) +
d
∑

i=1,pi<ci

(ci − pi)



 .
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Figure 3. Two examples (sets of points) and each point’s region of influence.

For box b, we then set the value of A′
b to be the maximum possible

value of the above equation over all p ∈ P , where P is the set of points
in the current example.

Note that each box b in the space either has an attribute value
A′

b = 0 (if it contains no point from the current example P ) or its
value is equal to maxp∈b{µb(p)}. Thus the assignment of values to the
attributes is completely determined by the points in P . For a point
p ∈ P and a radius r > 0, we define p’s region of influence as

Rr(p) =
{

c ∈ Sd : ‖p− c‖` ≤ r and ‖p′ − c‖` ≥ ‖p− c‖` ∀p′ ∈ P
}

.

In other words, Rr(p) is the set of centers of boxes whose attributes
A′ are determined by p. Rr(p) can be thought of as the intersection
between the box with radius r centered at p and p’s share of a Voronoi
tesselation of Sd under the `-norm. Any box b in Sd whose center is
not in Rr(p) for any p ∈ P has A′

b = 0.
Now for example, consider the first instance (P1 = {p1,p

′
1}) seen,

with n = 2 points, as in Figure 3. Let r = 8, which is also the length of
each box edge since the 1-norm is used. The points’ regions of influence
are (solid) boxes of radius 8 centered at those two points. Since these
boxes do not intersect, we need not concern ourselves with the Voronoi
tesselation. We start EG with w1 = 1 and use the identity function as
our transfer function.

Since we can write

wt,c = w1,c exp



−2η
t−1
∑

j=1

[

(ŷj − yj)

(

d
∑

i=1

pj,i − ci

r

)]



 ,
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Figure 4. Three points from different trials and the groups they define.

then in general, if boxes c and c′ have always been influenced by the
same point pt for each trial t and pt,i ≥ ct,i ∀ i, then

wt,c′ = w1,c′ exp



−2η
t−1
∑

j=1

[

(ŷj − yj)

(

d
∑

i=1

pj,i − c′i
r

)]





= w1,c exp



−2η
t−1
∑

j=1

[

(ŷj − yj)

(

d
∑

i=1

pj,i − ci

r
−

d
∑

i=1

qi

r

)]





= wt,c exp



2η

(

d
∑

i=1

qi

r

)





t−1
∑

j=1

(ŷj − yj)







. (10)

Thus assuming no two regions of influence intersect per trial (e.g.
Figure 3), then we can partition each square into 2d quadrants (to
account for the absolute values). The intersection of any subset of the
quadrants comprises a group (e.g. Figure 4). We choose one represen-
tative c per group and can use Equation (10) (or a variant, to account
for absolute value) to compute the weight of any other attribute in the
group.

When a new example Pt arrives for trial t, we compute p’s region of
influence for each p ∈ Pt, and (assuming no two ROIs intersect for this
trial) partition the space into groups using the previous t − 1 ROIs.
Now consider all boxes c in a group G ∈ Rr(p) (we assume w.l.o.g.
that all these boxes lie in a “lower left quadrant” w.r.t. p). Group G’s
contribution to the prediction is

∑

c∈G

µc(p)wc,t.
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Let cmin
i and cmax

i be, respectively, the lower and upper values for the
ith coordinate of any box in G. Also, let cG be the representative box
for group G and let cG,i be its ith coordinate. Expanding the above
equation gives the following for group G’s contribution, where we let

YG,t−1 = exp
(

(2η/r)
(

∑t−1
j=1 (ŷj − yj)

))

:

cmax

1
∑

c1=cmin

1

· · ·
cmax

d
∑

cd=cmin

d

[(

1−
d
∑

i=1

pi − ci

r

)(

wt,cG
(YG,t−1)

(

∑d

i=1
qi

)

)]

=
wt,cG

r

cmax

1
∑

c1=cmin

1

· · ·
cmax

d
∑

cd=cmin

d

[(

r −
d
∑

i=1

pi

)

(YG,t−1)

(

∑d

i=1
qi

)

−
(

d
∑

i=1

ci

)

(YG,t−1)

(

∑d

i=1
qi

)

]

=









wt,cG

r (YG,t−1)

(

∑d

i=1
cG,i

)









(

r −
d
∑

i=1

pi

) cmax

1
∑

c1=cmin

1

· · ·
cmax

d
∑

cd=cmin

d

(YG,t−1)

(

∑d

i=1
ci

)

−









wt,cG

r (YG,t−1)

(

∑d

i=1
cG,i

)









cmax

1
∑

c1=cmin

1

· · ·
cmax

d
∑

cd=cmin

d

(

d
∑

i=1

ci

)

(YG,t−1)

(

∑d

i=1
ci

)

.

The last equality holds since qi = ci − cG,i. This can be solved very
similarly to Equations (8) and (9).

Another interesting option is when the maximum function is used
for the membership combination and the minimum is used as the ag-
gregation operation. That is, given a set of boxes, a point receives
the maximum label given to it by any of the boxes, and the label
for a bag is the minimum label given to any point in the bag: y =
minp∈P {maxc∈C{µc(p)}}. To learn this class, instead of combining
attributes that capture the degree to which the example is positive, we
instead define attributes that capture the degree to which the example
is negative. These attributes are then combined to obtain a prediction
of the degree to which the example is negative. By then returning 1
minus this quantity, we obtain our prediction of the degree to which
the example is positive.

Let C be the set of boxes defining the target concept. To approxi-
mate the degree to which the “max-min” condition is not satisfied, we
assume there is some set of boxes C̄ (such that |C̄| = poly(|C|)) whose
union comprises the complement of the union of boxes from C and such
that the degree to which (2) is not satisfied is maxp∈P {maxc∈C̄{µc(p)}} =
maxc∈C̄{maxp∈P {µc(p)}}. We assume that C̄ is defined as part of the
target concept along with C.
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THEOREM 4. On any sequence of trials S = 〈(x1, y1), . . . , (xt, yt)〉,
our algorithm for learning real-valued geometric patterns (using max
combination and min aggregation) on multiple-instance examples of m
points from {1, . . . , s}d has loss on S of at most

3
(

Loss (u,S) + 2d ln(2s)− ln
(

|C|+ |C̄|
))

,

where C and C̄ define the target concept. Furthermore, if Loss (u,S) is
known a priori to be 0 then we obtain the stronger loss bound of

2
(

2d ln(2s)− ln
(

|C|+ |C̄|
))

.

Proof: Enumerate all possible boxes in Sd and for each box b cre-
ate an attribute Ab, setting it to maxp∈P {µb(p)}. Here N ≤ (2s)2d.
Since the target concept is defined by |C| + |C̄| boxes, there are only
K = |C|+ |C̄| relevant attributes and the target concept is defined by
taking the maximum value from among these attributes. Without loss
of generality, we can assume that

∑N
i=1 ui = 1. Hence, the worst-case

loss bound occurs when the optimal weight vector u has K entries of
1/K and the remaining entries are 0. Applying Theorem 1 yields the
stated result.

The computation for Ab for max-max is the same as that for Ab for
max-min, though the interpretation is different.

8. Other Results and Future Directions

We believe that we can easily substitute other variants of EG for EGU
in our work, and use different loss and transfer functions (e.g. sigmoidal
functions) at the node’s output. Also, rather than have a single box type
with fixed radius, we can allow boxes to come from a known finite set B.
For computing virtual weights with the average approach (and others),
we can do this as follows: for each group G, run through all boxes b ∈ B
that fit the points contained in G. This will have time polynomial in |B|
and |P|. A natural extension to this work is to allow the target boxes to
be arbitrary within the discrete, bounded space. Obviously the above
approach will not work efficiently, so a new technique is required. The
main issue is that arbitrary boxes implies widely varying radii, so the
radius in the denominator of Equation (1) varies in the sum, and hence
our current virtual weights technique does not apply. It is likely that
the closed form of our summations would have harmonics, which we can
at best approximate with logarithms. If this occurs, perhaps the loss
bounds for EGU and GD can be made to work with this approximate
simulation, which would accommodate the harmonic.
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Of course, other membership functions are possible as well. For
example, we could use the function of Equation (1) using the 2- or
∞-norm. We believe that the summations could be solved for these
cases, but they become more complicated than for the 1-norm. Other
membership functions that we can try include Gaussian-shaped func-
tions and the following unnormalized linear functions (Lin and Lee,
1996):

µb(p) =
1

d

d
∑

i=1

(1− f (pi −Mb,i, α)− f (mb,i − pi, α)) ,

where

f(z, α) =







1 if zα > 1
zα if 0 ≤ zα ≤ 1,
0 if zα < 0

mb,i is the minimum value of box b in dimension i, Mb,i is the maxi-
mum value of box b in dimension i, and α is a “ramp” parameter that
determines how quickly the membership function decreases as distance
from the box’s edges increases. So µb(p) = 1 if p lies entirely inside b
and = 0 if p lies entirely outside b. This function has the advantage
that no normalization is used, so virtual weights should be applicable
even when B is the set of all possible boxes in Sd. We could even allow
the target concept to use one of several possible values for α for each
box. This should be easily accommodated if the set of possible values
is polynomially sized.

The previous paragraph implied a method of learning the correct
membership function for each box while simultaneously learning the
boxes. Of course, in these cases the size of the set of possible functions
was finite. An interesting question is whether we can learn the appro-
priate functions from an infinite set while simultaneously learning the
boxes.

It is also possible for this algorithm to work in constant-dimensional
real space. First draw an unlabeled sample, placing all points into a set
P. Then enumerate a set of boxes8 B such that each box b ∈ B contains
a distinct subset of the points of P. Then attach attributes to each box
as in Section 6 and run GD or EG. Here the virtual weights technique
is unnecessary since the number of attributes is polynomial in the input
size. If all examples are drawn i.i.d. from a fixed distribution, then the
result is an algorithm with an agnostic expected on-line mistake bound
that can be converted to an agnostic PAC algorithm. To determine an

8 This technique should also work for other components with bounded complexity,
e.g. hyperellipsoids or irregular cross-polytopes.
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appropriate size of the unlabeled sample, we would first bound the fat-
shattering dimension (Kearns and Schapire, 1994; Bartlett et al., 1996)
of the components and then bound the FSD of k such components
combined by our aggregation operator.

Finally, we plan to empirically evaluate our results on the prob-
lems in image classification, content-based image retrieval, and pattern
matching used to motivate our work. The examples could be real-valued
geometric patterns that come from data labeled by a human expert
as to how closely it resembles an ideal piece of data. We would also
like to apply this algorithm to multiple-instance examples labeled by a
real-valued method such as data from a real-valued image database.
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